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    Abstract
    

Building distributed embedded systems from scratch is 
not cost-effective. Instead, designing and building these 

systems by using domain specific components has 

promise. However, in using components, the most 

difficult issues are ensuring that hidden dependencies 

won't cause failures and that non-functional properties 

such as real-time performance are being met. We have 
built the VEST toolkit whose aim is to provide a rich set 

of dependency checks based on the concept of aspects to 

support distributed embedded system development via 

components. We describe the toolkit and its novelty. We 

also use VEST on two case studies of a CORBA-based 

middleware for avionics. Data collected shows that 
VEST can significantly reduce the time it takes to build 

a distributed real-time embedded system by over 50%.  

Key “lessons learned” from our experience with using 

VEST on these case studies are also highlighted. 

1. Introduction  

Building distributed embedded system software is time-

consuming and costly. The use of software components 

for constructing and tailoring these systems has promise. 

What are needed are tools to support program 

composition and analysis of component-based embedded 

systems. In these systems designs are instantiated largely 

by choosing pre-written components from libraries 

rather than by implementing the design from scratch. 

One major difficulty of embedded system composition is 

the crosscutting dependencies among components that 
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are often hidden from the composers. Composition tools 

should support dependency checks across components 

boundaries and expose potential composition errors due 

to the crosscutting dependencies.  

Our work focuses on the development of effective 

composition mechanisms, and the associated 

dependency and nonfunctional analyses for real-time 

embedded systems. Our solution is based on extending 

the notion of aspects. Aspects [10] are defined as those 

issues that cannot be cleanly encapsulated in a 

generalized procedure. They usually include issues that 

affect the performance or semantics of components. This 

includes many real-time, concurrency, synchronization, 

and reliability issues. Aspects, to date, have largely been 

language dependent in that aspects are implemented as 

language constructs. A major contribution of our work is 

that we extend the concept of aspects to language 

independent notions and apply them at design time. We 

identify two types of language-independent aspects 

referred to as aspect checks and prescriptive aspects.

Together these permit the benefits of aspects to be 

exercised early in the composition process rather than in 

the implementation phase. Our solutions are embodied 

within a toolkit called VEST (Virginia Embedded 

Systems Toolkit). VEST itself is not a complete 

requirements, design and implementation tool; rather it 

currently focuses on the specific composition and 

analysis tasks.  

2. Overview of VEST  

VEST provides an environment for constructing and 

analyzing component-based distributed real-time 

embedded systems. VEST helps developers select or 

create passive software components, compose them into 

a product, map the passive components onto active 

structures such as threads, map threads onto specific 

hardware, and perform dependency checks and non-

functional analyses to offer as many guarantees as 

possible along many dimensions including real-time 

performance and reliability. Distributed embedded 

systems issues are explicitly addressed via the mapping 
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of components to active threads and to hardware, the 

ability to include middleware as components, and the 

specification of a network and distributed nodes.  

The VEST environment is composed of five libraries, a 

set of aspect checks, and a GUI-based environment for 

composing and analyzing embedded products. 

• 4 Component Libraries: Because VEST supports 

real-time distributed embedded systems, the VEST 

component libraries contain both software and 

descriptions of hardware components and networks. 

VEST components can be abstract or actual. An 

abstract component is a design entity that represents 

the requirements, e.g., a timer with certain 

requirements or a generic processor is an abstract 

component. An actual component is the 

implementation or description of a reusable entity. 

A specific timer module written in C and a Motorola 

MPC7455 are examples of actual components. Sets 

of reflective information exist for each of these 

component types. The reflective information of an 

abstract component includes its interface and 

requirements such as for security. The reflective 

information for actual components includes 

categories such as linking information, location of 

source code, worst-case execution time, memory 

footprint, and other reflective information needed to 

analyze crosscutting dependencies. The extent of the 

reflective information and its extensibility are some 

of the key features that distinguish VEST from 

many other tools. To support the whole design 

process of embedded systems, VEST implements 

four component libraries: the application library, 

middleware library, OS library and a hardware 

library.   

• Prescriptive Aspects Library: Prescriptive aspects 

are reusable programming language independent 

advice that may be applied to a design. For example, 

a developer can invoke a set of prescriptive aspects 

in the library to add a certain security mechanism en

masse to an avionics product.  

• Aspect Checks: VEST implements both a set of 

simple intra- and inter-component aspect checks that 

crosscut component boundaries. A developer can 

apply these checks to a system design to discover 

errors caused by dependencies among components. 

One aspect check in VEST is the real-time 

schedulability analysis for both single-node and 

distributed embedded systems.   

• Composition Environment: VEST provides a 

GUI-based environment that lets developers 

compose distributed embedded systems from 

components, perform dependency checks, and 

invoke prescriptive aspects on a design. For details 

on the GUI see [24]. 

3. Language Independent Aspects 

Aspects [10] are defined as those issues that cannot be 

cleanly encapsulated in a generalized procedure. For 

example, changing one component may affect the end-

to-end response time of many components that are 

working together. Security aspects of a system also 

involve multiple correlated components. Aspects, as 

defined in the literature, are at the programming 

language level. For example, AspectJ [10] provides 

syntax that permits the specification of aspects and a 

weaver that weaves the code specified in the aspect into 

the base Java code. In VEST, we apply the concept of 

aspects as crosscutting dependencies at design time. This 

results in language independent aspects. We have 

discovered that there are, at least, two types of language 

independent aspects. The first type we call prescriptive 

aspects. In prescriptive aspects, a general set of advice is 

programmed and retained in the prescriptive aspect 

library. This advice can then be applied to the design, 

not source code. The application of this advice changes 

the reflective information associated with the affected 

components and their interactions (section 3.1). The 

second type of aspect we call aspect checks. Aspect 

checks look for specific crosscutting dependencies, 

which are often hidden from developers (sections 3.2 

and 4). Language independent aspects help developers 

handle crosscutting dependencies among components at 

the design stage. Compared with aspect oriented 

languages, language independent aspects reduce errors in 

the early stages of software design lifecycles, which lead 

to shorter time to market. Language independent aspects 

can achieve the benefit of aspects in embedded systems 

even when general purpose languages (e.g., C++, C, and 

Java) are used for implementation. 

3.1. Prescriptive Aspects 

Prescriptive aspects are advice that may be applied to a 

design. The advice is written in a simple VEST 

Prescriptive Aspect Language (VPAL). Prescriptive 

aspects are independent of programming languages 

because they apply to the system design, and the 

resultant new design can be implemented in any 

programming language. To change the system design, 

prescriptive aspects can adjust properties in the reflective 

information (e.g., change the priorities of a task or the 

replication levels of a software component). It can also 

add/delete components or interactions between 

components. An English language description may also 

be associated with each aspect. This permits an 
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explanation of why this advice is in the library and how 

and when to use it.  

Specification and Examples 

We have examined specific prescriptive aspects related 

to the distributed avionics domain via Boeing’s Bold 

Stroke middleware. The following are examples of 

prescriptive aspects organized in categories. Each of 

these examples only list the (parameterized) advice; they 

do not show the accompanying English language 

description and constraints. These examples demonstrate 

that prescriptive aspects can be a powerful tool in real-

time embedded system design. 

1) Security:  

a) for all pilot to ground communication encrypt it 

with RSA; 

b) for all data of type X encrypt with technique Y;  

c) for security level of any data of type X change 

to Y; 

d) move all data with security levels above X to 

physical store Y; 

2) Persistence:  

a) for all log data in the navigation subsystem 

make it persistent; 

b) for all data of type X make it persistent; 

c) for all objects of type X make the save rate Y; 

3) Redundancy:  

a) make X copies of all data of type Y;  

b) update all backups for data X with rate Y;   

4) Locking: 

a) for data of type X lock all/fields of data;  

b) for all data of type X change to spin lock; 

5) Events: 

a) for threads of priority higher than X modify the 

conditions in which to fire events; 

b) for all events of a type X make them also wait 

for condition Y; 

c) for all components that are critical have them 

fire a new event called X whenever they 

execute; 

d) for all components that filter their own events 

make a change to remove that filter and use the 

event channel filter. 

Applying Prescriptive Aspects  

The developer can apply a prescriptive aspect to a design 

by running a VPAL interpreter on its specification. The 

interpreter modifies the reflective information of design 

components. Since the code itself would no longer 

reflect the new design change, the interpreter marks the 

actual source code associated with that change as 

"inconsistent and needing changes" to meet the new 

design. Currently VEST does not support automatic code 

generation/modification, and the developer needs to 

implement the code change manually. Once the new 

code is created and linked to the component then the 

inconsistency indication is removed. Currently, we are 

implementing a tool to automatically convert a system 

design in VEST to a Bold Stroke configuration 

(implementation) through an XML configuration 

interface provided by Boeing. 

Prescriptive Aspect Library 

Prescriptive aspects should be general enough to be used 

in different products. VEST supports reusing 

prescriptive aspects by organizing them into the 

prescriptive aspect library. Prescriptive aspects will not 

be permitted into the prescriptive aspect library unless it 

meets with the approval of the system administrator. The 

requirements include sufficiently general, parameterized, 

complete English description, meaningful constraints 

specified, and relating to non-functional properties. 

In some cases it may be necessary to apply to a design a 

set of seemingly “unrelated” aspects in some order. To 

support this feature, the developer has the capability to 

describe precedence constraints among the aspects. More 

importantly, the same mechanisms can be applied to 

create a “related” set of changes to effect a global 

change to the system. In order to make high level 

changes to a design (e.g., in regard to security, fault 

tolerance, reliability, performance, etc.) it is usually 

necessary to make a set of “related” and more specific 

changes. For example, there can be a group of advice in 

the prescriptive library that supports a secure avionics 

system. This advice may encompass a collection of 

changes that includes encrypting certain types of 

communication, adding intrusion detection changes, 

adding modifications that prevent or minimize denial of 

service, etc. The mechanisms in VEST support this type 

of design where the root of the hierarchy can imply 

changes needed for security, and the rest of the tree 

contains the specific modifications required. Future 

work will exploit this novel view supported by VEST. 

The Value of Prescriptive Aspects 

There are many ways in which prescriptive aspects have 

shown to be valuable. First, by using prescriptive aspects 

a developer is encouraged to design in a functional 

manner and then to apply non-functional updates to the 

design. This separation of concerns makes design easier. 

Second, prescriptive aspects can be thought of as general 

advice for changing a design in a global manner. The 

advice is domain specific. In this case, a developer can 

walk through all the library advice categories and 

determine if they are appropriate. For example, after 
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designing a functional avionics product a developer may 

browse through prescriptive aspects for security, real-

time performance, fault tolerance, persistence, etc. For 

each category they can determine if any of the advice 

should be applied. This browsing can aid in producing a 

more complete and tailored design and when specific 

advice is already in the library it is easy to apply it. 

Third, advice can be grouped in such a way to support 

implementing a wide reaching concept, such as 

improved computer security. Under this general advice 

notion there might exist a group of prescriptive changes 

that relate to denial of service, encryption, and 

authentication. Applying the high level advice, applies 

the entire group. Fourth, prescriptive aspects support a 

widespread global change in the design by simply 

defining new advice or using pre-declared advice and 

applying it to your design. This prevents bugs where 

changes required are only made in some of the requisite 

places. Also implied by this advantage is that re-

applying different advice can be done simply and 

dependency checks and schedulability analysis can be 

re-run automatically. This facilitates looking at multiple 

competing design options and making modifications 

easy.  

3.2. Aspect Checking 

One goal of VEST is to provide support for various 

types of dependency checking among components 

during the composition process. Dependency checks are 

invoked to establish certain properties of the composed 

system. This is a critical part of real-time embedded 

system design and implementation. Some dependency 

checks are simple and have been understood for a long 

time. We call these intra- and inter-component 

dependency checks. Other dependencies are very 

difficult and even insidious. We refer to these as 

crosscutting dependencies or aspect checks. Aspect 

checking is an explicit check across components that 

exist in the current product configuration. We have 

identified many aspect checks that would help a 

developer avoid difficult to find errors when creating 

embedded systems from components. In many cases the 

important thing is identifying the check required and 

implementing it so that it is automatic. Although the 

implementation of some checks may be simple, when 

these checks are combined with all the other features of 

VEST, the result is a powerful tool. To illustrate these 

concepts we discuss one of the most important aspect 

checks, end-to-end real-time scheduling, in the next 

section.   

4. End-to-End RT Scheduling Aspect 

An important check for real-time embedded systems is 

the schedulability analysis that validates whether all 

tasks can make their deadlines. Note that while 

designing and implementing a system that most changes 

made will affect the real-time properties of the system. 

This makes real-time scheduling a global cross cutting 

dependency. While many different schedulability 

analysis techniques exist [1, 2, 4, 9, 11, 16, 26], they 

differ in their assumptions on the task set and none of 

the existing analysis is applicable to all real-time 

embedded systems. The compatibility between 

schedulability analyses and the characteristics of the 

designed system is a typical crosscutting dependency 

that is “hidden” from the designer. Using an 

incompatible analysis on a system can lead to timing 

violations even when the schedulability analysis itself is 

correct. To handle different types of embedded systems, 

VEST provides a flexible scheduling tool that provides 

aspect checks on the compatibility between existing 

schedulability analyses and the system. This tool is 

composed of a set of schedulability analysis routines, an 

assumption table, and a reflective information collector. 

The assumption table lists the assumptions of each 

schedulability analysis routine. The current list of 

assumptions includes the applicability of various 

scheduling analysis with respect to periodicity, 

distribution, importance, blocking and precedence 

constraints. For example, the assumptions of the Rate 

Monotonic analysis are that all tasks are periodic. The 

Rate Monotonic with Priority Ceiling protocol’s 

assumptions are (periodic, blocking). The VEST 

scheduling tool is extensible and new scheduling 

techniques can be added to the tool together with their 

assumptions.  

Developers can assess the schedulability of the current 

design by running the scheduling tool from the GUI. The 

reflective information collector scans the software, 

hardware and network components of the design and 

produces a platform/task set information file that 

includes a list of the characteristics and the timing 

information of the task set. The tool selects an analysis 

whose assumptions match the characteristics of the 

system. This ensures that proper analysis and scheduling 

policy is applied. For example, for a system with all 

independent periodic tasks on a single processor, the 

Rate Monotonic check or MUF will be applied to the 

system. However, if the same task set is designed on a 

distributed platform, the DM/Offset analysis described 

below will be applied.  
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4.1. Deadline Monotonic with Phase Offset 

Currently the VEST scheduling tool implements the 

basic Rate Monotonic check, the Maximum Urgency 

First algorithm [4], and a more sophisticated end-to-end 

analysis for distributed systems. In applying the tool to a 

Boeing’s distributed avionics case study we found that 

RMA and MUF were not sufficient because such 

systems often run on a distributed platform. Avionics 

based on real-time CORBA (e.g., Bold Stroke and TAO) 

[6, 15, 22]  requires support for the following distributed 

scheduling problem.  

A periodic task Ti consists of multiple subtasks {Tij} on 

different processors. The set of subtasks have the same 

period Pi, and the task deadline Di = Pi. Figure 1 shows a 

task T1 having three subtasks connected by arrows 

(consider these T11, T12 T13 not labeled in the figure). 

After completion of the first subtask T11, an event is 

pushed to the second subtask T12, and similarly for the 

third subtask T13. The set of three subtasks of T1 has a 

single deadline and period P1=D1. In this example, this 

task T1 is physically placed on three distinct processors 

connected via a bus or a LAN. This example explains a 

single task. The system is then composed of multiple 

such tasks, each task Ti composed of one or more 

subtasks placed on one or more physical processors, and 

with communications proceeding in possibly “different” 

directions among the processors.  

Distributed Task - conceptual Period=P1

T1

Actual Distributed Scheduling Problem

Proc 1

Proc 2

Proc 3

D11 Phase Offset

D11 where D11 < P1 => DM

= Communication delay
D12 Phase Offset D13

T11

T12

T13

Distributed Task - conceptual Period=P1

T1

Actual Distributed Scheduling Problem

Proc 1

Proc 2

Proc 3

D11 Phase Offset

D11 where D11 < P1 => DM

= Communication delay
D12 Phase Offset D13

T11

T12

T13

Figure 1. Schedulability Analysis for Deadline 

Monotonic with Phase Offset 

This distributed scheduling problem can be modeled as 

an end-to-end scheduling problem. To provide 

scheduling support for the above distributed scheduling 

problem, VEST implements a scheduling analysis that 

we call Deadline Monotonic with phase Offset

(DM/Offset). The assumptions of DM/Offset are 

(periodic, distributed).  

If the design matches the its assumptions, DM/Offset 

assigns intermediate deadlines {Dij} (e.g., D11, D12 and 

D13 in Figure 1) for the subtasks {Tij} of each task Ti,

and accounts for the worst-case network delay tc. The 

first subtask Ti1 has a start time at the beginning of its 

period and a deadline less than its period; the subsequent 

subtask have a static phased offset equal to the deadline 

of its previous component plus tc. (The static offset 

requires delaying the release of a subtask Tij if its 

predecessor Tij-1 finishes earlier than its deadline.) The 

deadline of the last subtask equals the deadline of the 

whole task. If every subtask Tij meets its intermediate 

deadline, the whole task meets its deadline Di.

Consequently, the distributed schedulability analysis is 

reduced to the analysis of each node independently with 

phased offset. This phase offset policy is similar to the 

Modified Phase Modification Protocol [2] and a protocol 

described in [26]. 

For the schedulability analysis on each node, we employ 

Audsley’s priority assignment and analysis algorithm 

found in [1]. The Audsley algorithm provides an optimal 

priority assignment and feasibility test algorithm for 

static priority tasks with arbitrary start times (phase 

offsets) on a single node. It is different from Rate 

Monotonic and Deadline Monotonic priority assignment 

schemes, which assumes that tasks must be released 

simultaneously, i.e., without considering the start times 

(phase offsets). The current DM/Offset analysis takes a 

simple approach that evenly divides the deadline of each 

task as the intermediate deadlines of its subtasks.  

In our system task and hardware models are 

automatically determined by VEST itself.  Other tools 

such as CAISARTS [8] are not linked to a design and 

analysis system, and commercial tools such as TimeWiz 

use simulation to analyze most types of distributed real-

time programs. 

5. Semantics and Correctness 

The VEST tool does not support formal proof of 

correctness. Rather, its goal is to apply key checks and 

analysis to avoid many common and insidious cross 

cutting problems that might otherwise exist. However, 

VEST is based on various underlying semantics that 

support these various types of checks and analysis. 

First, VEST is built with GME [12]. GME has explicit 

semantics for components, interfaces, relationships, 

dependencies, and constraints. Subsequent analysis and 

checks rely on this underlying semantics.  

Second, VEST specifically implements the semantics of 

the Bold Stroke middleware in regards to tasks and 

events. This is the same as the ACE/TAO semantics 

[22]. VEST is application domain dependent so 

implementing domain specific semantics is necessary. 

For example, the current implementation described in 
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this paper focuses on the avionics domain as supported 

by Bold Stroke middleware [23]. VEST is also 

extensible and can easily implement other semantics 

from other application domains.  

Third, aspect checks and prescriptive aspects collect data 

from the underlying model and apply interpreters to that 

data. For example, precise event semantics (of 

ACE/TAO) permit VEST to collect all suppliers and 

consumers of events and then perform checks such as 

determining if any events have no suppliers or 

consumers, or determine if cycles exist.  Consequently, 

the correct implementation of  the interpreters rely on the 

underlying semantics of GME and Bold Stroke. 

Fourth, the VEST semantics for threads, hardware 

specification, events, resource assignments, etc. permit 

automatic creation of precise system-wide task set and 

hardware requirements including real-time requirements. 

The associated analysis supplied by VEST uses this 

specification and matches it with appropriate scheduling 

techniques. This provides correct schedulability analysis.  

waypoint : 

BM__OpenEDComponent

waypointProxy : 

BM__OpenEDComponent

fltPlanDisplay : 

BM__DisplayComponent

pilotControl : 

BM__PushDataSourceComponentImpl

infrastructure

Represents 

line of 

distribution

2. SetData()

6. InternalizeState()

7. SetStateUpdated()

1. SetData()

8. Push()

DATA_AVAILABLE9. GetData()

3. SetData()

5. ExternalizeState()

4. Push()

DATA_AVAILABLE

Figure 2. UML Diagram of a Pilot Control 
Subsystem 

6. Case Study I: Composition and 

Analysis Scenario 

The purpose of this case study is to demonstrate the 

effectiveness of the ideas incorporated in VEST.  To do 

this we applied VEST to the design and composition of a 

portion of a distributed avionics system that is based on 

the Bold Stroke middleware. In this avionics system, a 

pilot control component measures coordinate data 

periodically, then sends its coordinate data to a waypoint 

control component.  Upon receiving coordinate data, the 

waypoint control component calculates a new route for 

the plan, updates its database, and sends that new route 

to a display component. This avionic control system is a 

typical example of a distributed real-time embedded 

system with many crosscutting concerns.  In fact, this 

example scenario  is posted by Boeing as a good 

scenario for evaluating design and analysis tools. Figure 

2 shows the UML diagram of the avionic system’s 

software architecture. 

To better understand the case study additional details 

about the application are provided: The system is 

composed of four first level components: pilotControl, 

waypointProxy, waypoint, and fltPlanDisplay.  They run 

on the Bold Stroke middleware. The pilotControl 

component is an event supplier.  It supplies coordinate 

data to the waypointProxy component at a specified 

frequency.  WaypointProxy is a proxy representing the 

waypoint component and it runs on another processor.  

Communication is supported by the middleware service 

known as an event channel. Via the event channel, data 

originating in the pilotControl component is forwarded 

to the waypoint component.  Likewise, the waypoint 

component sends the newly calculated route back to 

waypointProxy.  Finally, the fltPlanDisplay component 

gets the new route information and displays it. 

6.1. Design the Pilot Control Subsystem 

In this case study, the developer first creates the system 

using abstract components. After the abstract 

specification has been performed, the system design 

might look as shown in Figure 3.  

Figure 3. VEST model of a pilot control 
system 

In the above diagram there are two layers shown. One 

layer is the software layer. This layer  (see the top panel 

of the figure) has basic four components: pilot control, 

waypointProxy, waypoint, and fltPlanDisplay. The high-

level interaction of these components are shown by the 

dashed lines. By high-level interaction we mean that if 

there is any event propagation from one component to 

another then these components are connected by an arc.  
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Direction of a connection shows the flow of events.  A 

second canvas in the picture shows the hardware layer. 

In this example, the system is deployed in a distributed 

environment. It contains two processors: a pilot 

processor and a waypoint processor. They are connected 

via a bus interconnect. Also, the system has two non-

volatile memory units and one volatile memory unit. 

What are not shown in the diagram are the OS, Aspect, 

and middleware layers. The components of these layers 

can be viewed from the browser menu shown on the 

right-hand side of the figure. In the OS layer, we have 

two threads: a Waypoint thread and a PilotControl 

thread. The waypoint thread is mapped to the waypoint 

processor and the pilot control thread is mapped to the 

pilot control processor.  The components that run on the 

waypoint thread are Pilot Control, WaypointProxy and 

fltPlanDisplay.  

The persistence service of Bold Stroke is one focus of 

this case study. Every application component that needs 

to maintain persistent data needs to create a persistence 

adapter that set the follow attributes of the persistence 

service: save_rate, is_double buffered, and 

track_dirtiness. The save rate specifies the frequency of 

the persistence thread. Is_double_buffered identifies 

whether the state should be saved twice or not. 

Track_dirtiness is a boolean variable; if true, this 

parameter causes the state to be persistent if the 

persistent object is dirty.  

Double clicking on the software components shows the 

methods and member variables modeled in this 

component. An event graph is specified at this view 

(VEST models systems at the method level). The 

specification of the method-calling graph helps in 

completely characterizing the systems execution and 

thereby provides needed data for VEST to perform 

interface checking and schedulability analysis. After 

performing these operations the developer chooses 

actual components from the libraries and maps them to 

these abstract components. After modeling, the VEST 

developer makes various checks to boost his confidence 

in the correctness of the system.   

6.2. Memory Footprint Check 

In this case study, the first checks performed are intra-

component checks.  For instance, enough memory is 

vital for the system’s performance.  A memory footprint 

check is available in VEST.  The first part of the 

memory footprint check is concerned with main 

memory.  It sums the memory needed by all the 

components in the system, and all the available physical 

memory (RAM) provided by the hardware, and check if 

there is enough physical memory in the system.  In the 

case study, the developer initially specified the system as 

shown in the following table: 

Pilot 

Control 

Waypoint 

Proxy 

Waypoint fltPlan 

Display 

max 

foot -

print 

50M 100M 300M 100M 

However, the hardware memory is only of size 500M.  

Considering the system overhead, the memory check 

informs the developer of insufficient memory.  The 

developer either adds more memory, or reduces memory 

consumption by modifying application components.   

The second part of the memory check deals with 

NVRAM (e.g., EEPROM). Bold Stroke allows 

application programs to specify a set of data in some 

components to be persistent, so that important data in the 

system survives power failures. For the system to 

function correctly, sufficient NVRAM for persistent 

components should be provided. Our check assures the 

developer when there is enough non-volatile memory to 

meet the system’s requirement, or gives warning when 

not enough NVRAM is provided.  In this case study, the 

system has two NVRAMs with a total capacity of 300 

MB. The sum of the persistent objects’ size is 200 MB. 

The persistent object is originally configured as double-

buffered, which doubles the needed capacity of NVRAM 

to 400 MB. When invoked, the memory footprint check 

warns that there is insufficient NVRAM. In this case 

study, the designer now reconfigures the persistence 

adapter to single-buffered mode, and the memory check 

returns successful confirmation. While these checks are 

trivial, they are useful and demonstrate a simple cross 

cutting constraint.   

6.3. End-to-End Schedulability Aspect Check 

The developer may then proceed to make additional 

checks that are more sophisticated. VEST provides an 

automatic schedulability analysis. After the designer 

completes the design of the model, he runs the 

schedulability analysis to check the model. This analysis 

requires the DM/Offset analysis because the software 

components are mapped to multiple interconnected 

processors in the model. However, the output of the 

schedulability analysis shows that the model is not 

schedulable, as depicted in the following chart. The 

output contains a list of methods including the period 

and WCET of the methods in the CORBA components. 

Based on the event graph, multiple interacting methods 

on a same processor are grouped into a subtask, which is 

mapped to a thread. The second part of the output is the 

subtask list on each processor and its schedulability 
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analysis results. The subtask list includes the period, 

WCET, and the intermediate deadline and offset of each 

subtask. For the initial design with a period 400 ms, the 

analysis shows that processor 2 is schedulable, but 

processor 1 is not. Therefore, the design should be 

changed. 

List of methods 

MethodName MeasureLocation Processor 

Processor1 Period 400 WCET 67 

MethodName Push          Processor 

Processor1    Period 400 WCET 2 

MethodName Push   Processor 

Processor2    Period 400 WCET 4 

... ... 

Subtasks on Processor2 

Subtask Push Processor 2 Period 400 WCET 4  

Deadline 160 Startime 81 

Subtask  CalculateRoute  Processor 2 Period 400 

WCET 2 Deadline 320 Startime 241 

Priority level 2 has been assigned to Push. 

Priority level 1 has been assigned to CalculateRoute. 

Schedulability test on Processor2 passed. 

Subtasks on Processor1 

Subtask MesureLocation+Push+GetData Processor 1 

Period 400 WCET 102 Deadline 80 Startime 0 

Subtask DataReadyPush+Push+GetData+Display  

Processor 1 Period 400 WCET 11  Deadline 240 

Startime 161Subtask GetData Processor 1 Period 400  

WCET 2 Deadline 400 Startime 321 

Couldn’t assign, try next 

Priority level 3 has been assigned to 

DataReadyPush+Push+GetData+Display. 

Couldn’t assign, try next 

Priority level 2 has been assigned to GetData. 

Couldn’t assign, try next 

Schedulability test on Processor1 failed. 

Output of the schedulability check on the original 

pilot control subsystem with a period of 400 ms 

6.4. Prescriptive Aspects 

As part of the VEST tool, the designer can use a 

prescriptive aspect to change the design. To make the 

system schedulable, the developer applies the following 

prescriptive aspect to relax the period of each component 

from 400 ms to 600 ms. 

for *.Period=400 

   change *.Period=600 

After applying the prescriptive aspect (assuming that this 

change is compatible with the semantics of the 

application), the designer runs the schedulability 

analysis again, which as it turns out succeeds on both 

processors this time. The output is not shown due to 

space limitations.    

As another example, assume that every component has a 

notion of importance, whose value is  [high, medium, 

low].  For the sake of fault tolerance, the developer 

would like to double buffer as many important 

components as possible. In order to do that, he uses a 

prescriptive aspect.  The developer drags a prescriptive 

aspect into the system. 

 for SoftwareComponent.importance=*.[medium,high]  

    change PersistanceAdapter.isdoublebuffered=true 

Applying the above prescriptive aspect initiates a search 

for all software components. In the list of components, 

the prescriptive aspect interpreter looks for a property of 

type importance. The interpreter then tries to match the 

importance attribute of components to either medium or 

high, and if there is a success then it changes the 

persistent adapter associated with that component’s 

property is_double_buffered to true.  

Obviously this prescriptive aspect crosscuts multiple 

facets of the system. The developer wants to make sure 

that this aspect does not violate other specification for 

the system.  He runs the interpreter to execute the 

prescriptive aspect, and the changes are made to related 

components.  Then he runs the memory footprint check.  

It turns out that there are two persistent components of 

high importance (each has a size of 50M), and one 

persistence component of medium importance (which as 

a size of 100M).  If all of these are double buffered then 

the memory requirements are now 400M. The physical 

non-volatile memory in the system is only 300M, so 

there is not enough non-persistent memory to meet the 

requirement of the prescriptive aspect he enabled. Upon 

receiving a warning from VEST concerning the lack of 

memory availability, the developer changes the 

prescriptive aspect to only double buffer the highly 

important components.  

     for Software.importance=high 

        change PersistanceAdapter.isdoublebuffered=true 

The above syntax is similar to the previous one except 

that the range of components to change is now narrower, 

limiting itself to only high importance components. The 

developer then re-executes the prescriptive aspect, and 

applies the non-volatile memory check again.  The check 

passes successfully, since the changes in the software 

and middleware layers are in harmony with the hardware 

layer of the system. 

This case study shows that VEST has many advantages. 

First, it provides a way to speed up code-test-debug 

cycle through various checks it implements. Second, it 
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makes components more reusable across multiple 

projects, because it allows configurablility within 

components (at middleware layer and software layer) so 

that they are easily reusable, and it provides a library for 

a user to navigate and choose components. Third, VEST 

also gives users a higher confidence in the correctness of 

system operation.  Checks such as buffer sizing, memory 

sizing, and schedulability analysis reduce a user’s effort 

to achieve confidence. Fourth, the use of prescriptive 

aspects in a system makes it easy to extend/contract a 

system’s capabilities with global wide changes being 

performed automatically, avoiding errors of forgetting to 

change one or more locations.  

7. Case Study II: Measurement of 

Composition Time 

We performed a second case study to measure the 

benefits of VEST in composing distributed avionics 

systems. The performance metric is the time it takes to 

compose (including design, implementation via 

composition, and testing or analysis) an avionics product 

scenario to achieve end-to-end distributed real-time 

schedulability. This experiment was accomplished in a 

very limited situation. One expert from Boeing 

performed the experiment using their current approach, 

and one grad student performed the experiment using 

VEST. For each person we timed the various steps 

involved with this experiment. Since this is a single 

experiment with many potential issues, the results are 

not definitive. However, we believe that the results are 

representative and discuss how they might generalize to 

a larger experiment.

7.1. Experimental set-up 

The experiments used Boeing’s MOBIES OEP2.1 

Product Scenario 3.2 (PS 3.2) as a target system to be 

composed. The scenario represents that portion of an 

avionics system that displays waypoint and radar data 

and is published by Boeing as a typical subsystem to 

facilitate research that is applicable to real world 

problems. The waypoint data can be changed by the pilot 

and the radar data is produced at a 5hz rate by the radar 

device. The sensor coordinator notifies each logical 

sensor of when its data should be updated. 

This scenario is initially triggered by an interval timeout 

that is consumed by the pilotControl component.  Upon 

receipt of this event, the pilotControl pushes data to the 

waypointProxy via the Set operations in the proxy’s 

facet.  The waypointProxy then forwards this call via the 

Infrastructure component to the waypoint component.  

The waypoint then updates its state and issues a Data
Available event. This event causes the Replication 

Service to extract the state from the waypoint and send it 

to the waypointProxy.  The waypointProxy internalizes 

this state and issues its own Data Available event.  The 

proxy’s event is consumed by the fltPlanDisplay 

component that gets the data from the proxy and 

displays it. 

The baseline toolset for comparison includes Rational 

Rose [17] and Quantify both of which are currently used 

in Boeing’s product development. The UML models of 

all Bold Stroke components were available in Rational 

Rose before the experiment started. The worst-case 

execution times (WCET’s) of all used components were 

also available in the library before the experiment 

started. An expert at Boeing used the following process 

to compose PS 3.2: 

1. Design PS 3.2 by integrating the UML models 

of existing components in Rational Rose.  

2. Implementation: Program the design by 

connecting existing Bold Stroke components in 

C++ through the Bold Stroke event service. 

3. Testing: Run the implemented system to check 

for timing violations. If any timing violations 

are detected, go back to step 1; Otherwise, the 

composition is completed. 

At UVA, a graduate student familiar with VEST used 

VEST to compose the same product scenario. The VEST 

experiment included the following steps: 

1. Design PS 3.2 in VEST using component 

libraries. 

2. Scheduling analysis: Run the VEST scheduling 

tool to assess the schedulability of the design 

(without implementing the system). If the 

analysis shows that the design is not 

schedulable, go back to step 1. Otherwise, go to 

step 3. 

3. Implementation: Program the VEST design. 

Both VEST and the baseline experiments included two 

iterations of composition. Initially, the system was 

designed on a single-processor platform. Since the 

single-processor design turned out to be unschedulable, a 

new composition was needed. A new processor was 

added to the system and a distributed version of PS 3.2 

was composed by moving several components to the 

new processor. The distributed version was found to be 

schedulable. The VEST scheduling tool can 

automatically identify the applicable scheduling analysis 

that matches the system characteristics. Maximum 

Urgency First (MUF) scheduling analysis was 

automatically invoked for the single-processor design, 

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03) 
1080-1812/03 $17.00 © 2003 IEEE 



and the DM/Offset scheduling analysis was 

automatically invoked for the distributed design. 

7.2. Experimental Results 

Table 1: Measured Time with VEST and 
Baseline in Case Study II

VEST Baseline 

Step Time 
(min) 

Step Time 
(min) 

V.1.

1

Design: single 

processor 

40 B.1.1 Design: single 

processor 

25

  B.1.2 Implement: 

single 
processor 

75

V.1.
2

Scheduling analysis: 
single processor 

1 B.1.3 Test: single 
processor 

30

V.2.
1

Design: distributed 25 B.2.1 Design: 
distributed 

90

  B.2.2 Implementation

: distributed 

105 

V.2.
2

Scheduling analysis: 
distributed 

1 B.2.3 Test: 
distributed 

20

Implementation: 
distributed 

105    

Total Composition Time 172 Total Composition Time 345 

We measured the total composition time as well as the 

time that each step took in both experiments. The results 

are summarized in table 1. We used X.i.k to represent the 

kth
 step in the ith

 iteration of the X experiment, where 

X=V refers to the VEST experiment and X=B refers to 

the baseline experiment.  

Our measurement showed that VEST effectively reduced 

the total composition time of PS 3.2 by 50%. Analyses 

on the time spent on each step shows two key 

advantages of VEST compared to the baseline:  

• Reduce the rounds of implementation: 

Scheduling analysis enables VEST to drop 

wrong (unschedulable) designs without 

implementing the system. In this case study, the 

scheduling analysis showed that the single-

processor design was unschedulable. Hence, the 

VEST user avoided implementing the single-

processor composition (Step B.1.2) and saved 

75 min. Compared to the baseline, this reduced 

the total composition time by 22%. Note also 

that in VEST the scheduling is a rigorous 

analysis and in the standard approach it is only 

done via testing which is more error prone. 

• Replace time-consuming testing with quicker 

analyses: Two schedulability analyses (Steps 

V.1.2 and V.2.2) in VEST took a total of only 2 

minutes, compared to a total testing time of 50 

minutes (Steps B.1.3 and B.2.3) in the baseline 

experiment. This saved the VEST user 48 min 

and reduced the composition time by 14% 

compared to the baseline.  

While this case study focused on the scheduling part of 

VEST, we should note that both of the above benefits 

are also applicable to other aspect checks of VEST.   

8. Additional Lessons Learned 

One set of lessons learned deals with the modeling 

experience. Graphical modeling of complex systems, 

while very useful, still results in many human errors. In 

general, a model stabilizes only after a number of re-

designs. This includes many changes to high-level model 

components as well as fine tuning the properties of the 

components. Navigating and applying changes to these 

models are increasingly difficult as the models grow 

more complex. What is required are active components 

that make consistent and global changes.  This is one 

value to our prescriptive aspects. 

We also learned some additional things from the use of 

prescriptive aspects. The language that was initially 

designed could operate on properties of a set of objects. 

This was very useful in applying global and consistent 

changes to a class of objects based on types, properties 

or value. However, more capabilities are necessary. In 

particular, it is necessary to manipulate components 

based on their “relationships”. One motivation for this is 

that it is sometimes necessary to adjust certain properties 

or location of components based on their relationship 

with other components. For example, one very practical 

use we found was that if a certain set of components 

were mapped to a periodic thread we found that 

prescriptive aspects based on relationships could 

propagate any changes in the period down the calling 

chain. This means that the designer only needs to deal 

with the thread and not all the components in that task.  

We also found that automated dependency checks, even 

if simple, are very helpful. For example, making sure 

that there is enough memory and that all events have 

suppliers and consumers are simple, but necessary 

checks. 

Another set of lessons involve the schedulability 

framework. The schedulability framework in VEST is 

not meant to implement a novel  schedulability  analysis, 

but rather to ensure that the proper analysis is used and 

to automatically identify the task model from the system 
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description. These features improve accuracy and reduce 

design time. In fact, we have found that it is possible to 

automate the many of the time consuming steps 

including many parts of the schedulability analysis and 

just as importantly re-analysis. For example, it is often 

necessary to re-design when one processor does not have 

sufficient capacity to meet deadlines. This requires new 

analysis and distributed task allocation. New analysis 

often requires a new algorithm as well because many of 

the uni-processor algorithms don’t work for distributed 

systems. We also found that while there are a good 

number of solutions for distributed real-time scheduling, 

they are often (i) not supported in a tool, (ii) are not 

known by designers, and (iii) do not meet the 

requirements of the specific distributed programs 

actually being run. We also found that in some tools the 

task set characteristics are input directly, i.e., separately 

from the program design. Again, deriving the task set 

characteristics automatically, as in VEST, saves time and 

is more accurate. 

Finally, it is obvious that designers of embedded real-

time systems face many difficult problems. By working 

through various product scenarios with avionics 

designers we were able to identify the actual time it 

takes to perform various steps in the design process (for 

simple designs) so we can concentrate on automating the 

most time consuming parts [19]. In this paper we have 

shown that in one case study using VEST the designer 

saved over 50% of the time to design a system due to 

automation. We have also added an automatic task 

allocation module to automate another part of the re-

analysis. The designers now saved over 67% of their 

time (this data was not reported in this paper due to 

space limitations).   

9. State of the Art  

The work described in this paper builds upon and 

integrates research from three main areas: component 

based design, aspect oriented programming, and design 

tools. 

The software engineering field has worked on 

component based solutions for a long time. Systems 

such as CORBA [21], COM [13], and DCOM [14] exist 

to facilitate object or component composition. These 

systems have many advantages including reusability of 

software and higher reliability since the components are 

written by domain experts [23]. However, none of these 

systems have adequate crosscutting analysis capabilities.  

One exception is KNIT. KNIT [18] is an interesting 

composition tool for general purpose operating systems. 

This system is addressing a number of crosscutting 

concerns in composing operating systems. For example, 

they consider linking, initialization, and a few other 

dependencies. To date, it has not focused on real-time 

and embedded system concerns. 

A promising line of research is Aspects Oriented 

Languages [10]. This work attempts to address complex 

crosscutting dependencies at the source code level. As 

mentioned above, we are extending this work to design 

time where errors can be found early. 

An excellent tool that matches our goals quite closely is 

MetaH [27].  MetaH consists of a collection of tools for 

the layout of the architecture of an embedded system and 

for its reliability and real-time analysis. MetaH begins 

with active tasks as components, assumes an underlying 

real-time OS, and has some dependency checking. Their 

work uses fixed priority scheduling. The MetaH work 

was done prior to aspect oriented languages. In contrast 

we elevate aspects to the central theme of VEST and 

focus on dependency checks. We also provide more 

general scheduling analysis support: including 

automatically collecting the task set characteristics and 

requirements from the design, matching the requirements 

with assumptions of various scheduling analyses, 

providing more than fixed priority scheduling, and 

supporting access to a commercial real-time scheduling 

tool.   

10. Conclusion  

When building embedded systems from components [3, 

7, 20, 25], those components must interoperate, satisfy 

various dependencies [5], and meet non-functional 

requirements. The VEST toolkit can substantially 

improve the development, implementation and 

evaluation of these systems. The toolkit focuses on using 

language independent notions of aspects to deal with 

non-functional properties, and is geared to distributed 

embedded system issues that include application domain 

specific code, middleware, the OS, prescriptive aspects, 

and the hardware platform. The VEST tool has been 

implemented and used on three case studies, two of 

which are described in this paper. The case studies (i) 

qualitatively demonstrate the benefits of our tool and (ii) 

include quantitative data that show a savings of over 

50% in design and analysis time. Overall, a main 

advantage of our tool is that it has the potential to 

address the most difficult parts of component 

composition, the hidden crosscutting dependencies 

including overall, distributed real-time analysis. The 

next step is to incorporate VEST into a top-to-bottom 

requirements specification and design methodology. 

This step is underway. Currently, a beta version of 

VEST has been delivered to Boeing. The plans are to 

make VEST (including a user’s manual) available by the 

summer 2003. 
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